
System Architecture and Implementation of
a Prototyping Tool for SAT-based Constraint

Programming Systems ?

Takehide Soh1, Naoyuki Tamura1, Mutsunori Banbara1,
Daniel Le Berre2, and Stéphanie Roussel2

1 Kobe University 1-1, Rokko-dai, Nada, Kobe, Hyogo 657-8501 Japan
{soh@lion.,tamura@,banbara@}kobe-u.ac.jp

2 CRIL-CNRS UMR 8188, Université d’Artois, SP-18, F-62307, Lens, France
{leberre,sroussel}@cril.univ-artois.fr

Abstract. This paper describes the Scarab system, a Scala implementa-
tion of a prototyping tool for developing SAT-based Constraint Program-
ming systems. It consists of a Constraint Programming Domain-Specific
Language, a SAT encoding module, and an interface to the back-end SAT
solvers. The current implementation of Scarab uses Sat4j as the default
back-end solver, thus runs on any platform for which a Java Virtual Ma-
chine exists. Scarab provides a rich modeling language embedded in Scala
and enables programmers to rapidly specify problems and to experiment
with different modelings. In Scarab, one can use integer variables and
arithmetic constraints, and all of them are encoded into SAT without
the need of developing a dedicated encoder. SAT solvers are then used
for finding solutions.

Keywords: Propositional Satisfiability, Scala, Constraint Programming,
Domain-Specific Language

1 Introduction

Propositional Satisfiability (SAT) is fundamental in solving many application
problems in Artificial Intelligence and Computer Science [1]. Remarkable im-
provements in the efficiency of SAT solvers have been made over the last decade.
Such improvements encourage programmers to develop SAT-based systems for
logic synthesis, planning, scheduling, hardware/software verification, Constraint
Satisfaction Problem (CSP) and so on. However, for a given problem, one usu-
ally has to develop a dedicated program which encodes it into SAT, and cannot
focus on problem modeling which plays an important role in the system devel-
opment process. It is therefore important to investigate modeling languages and
development tools suited for SAT-based systems.

? This paper is an extended version of a paper entitled Scarab: A Rapid Prototyp-
ing Tool for SAT-based Constraint Programming Systems (Tool Paper), which is
accepted to SAT 2013.

Scarab

Program

(DSL+Scala)

Sat4j

CSP
object

Scarab API Sat4j API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

Scarab Solver API

Fig. 1. Scarab Architecture

Scala3 is a relatively new programming language receiving an increasing in-
terest for developing real-world applications [2]. Scala is an integration of both
functional and object-oriented programming paradigms. The main features of
Scala are type inferences, higher order functions, immutable collections, and
concurrent computation. It is also suitable for implementing Domain-Specific
Language (DSL) [3] embedded in Scala. The Scala compiler generates Java Vir-
tual Machine (JVM) bytecode, and Java class libraries can be used in Scala.

In this paper, we describe the Scarab4 system, a Scala implementation of a
prototyping tool for developing SAT-based Constraint Programming systems.
It consists of a Constraint Programming DSL, a SAT encoding module, and
an interface to the back-end SAT solvers. The current implementation of Scarab
uses Sat4j [4] as the default back-end solver and runs on any platform for which a
JVM exists. Fig. 1 shows an overview of Scarab architecture. First, a CSP object
is defined through Scarab API from user’s Scarab program. Second, when Scarab
solver is called from the program, the CSP object is encoded to a SAT object.
Sat4j is then called through Sat4j API from Scarab solver to find a SAT solution.
Finally, a CSP solution is returned back to the user’s program by decoding the
SAT solution (if any).

The major design principles behind Scarab are providing an expressive, effi-
cient, customizable, and portable workbench for SAT-based system developers.

Expressiveness: Scarab DSL provides a rich modeling language for Constraint
Programming with the help of Scala. We show the expressiveness of Scarab
through two examples: Square Packing and Latin Square. We also explain
a way to realize the addition of extra constraints, constraint solving with
assumptions, and commit/rollback of constraints with the help of Sat4j.

Efficiency: Scarab is efficient in the sense that it uses an optimized version of
the order encoding [5] for encoding CSP into SAT. The order encoding has
been used in an award-winning constraint solver Sugar [6].

Customizability: Scarab allows programmers to customize their own con-
straints and the search strategies. Scarab itself is compact. It is 500 lines
long without comments and the core of encoding module is 25 lines long.
This compactness makes it easier to implement other encoding modules.

3 http://www.scala-lang.org/
4 http://kix.istc.kobe-u.ac.jp/~soh/scarab/

1: import jp.kobe_u.scarab.csp._
2: import jp.kobe_u.scarab.solver._
3: import jp.kobe_u.scarab.sapp._
4:
5: val n = 15; val s =36
6:
7: for (i <- 1 to n)
8: { int(’x(i),0,s-i) ; int(’y(i),0,s-i) }
9: for (i <- 1 to n; j <- i+1 to n)

10: add((’x(i) + i <= ’x(j)) || (’x(j) + j <= ’x(i)) ||
11: (’y(i) + i <= ’y(j)) || (’y(j) + j <= ’y(i)))
12:
13: if (find) println(solution)

15
14

13 12 11

109 8

7

6

54

32 1

Fig. 2. Scarab Program of SP (15, 36) and Solution

1: var n: Int = 5
2: for (i <- 1 to n; j <- 1 to n) int(’x(i,j),1,n)
3: for (i <- 1 to n) {
4: add(alldiff((1 to n).map(j => ’x(i,j))))
5: add(alldiff((1 to n).map(j => ’x(j,i))))
6: add(alldiff((1 to n).map(j => ’x(j,(i+j-1)%n+1))))
7: add(alldiff((1 to n).map(j => ’x(j,(i+(j-1)*(n-1))%n+1))))}
8:
9: if (find) println(solution)

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

Fig. 3. Scarab Program of LS(5) and Solution

Portability: The combination of Scarab and Sat4j makes it possible to develop
portable applications which run on any platform with a JVM.

There have been several proposals providing Constraint Programming DSL
for developing SAT-based systems: Copris (in Scala) [7], Numberjack (in Python) [8],
Bee (in Prolog) [9], and B-Prolog (in Prolog) [10]. Among them, Copris and Num-
berjack are embedded in languages supporting functional programming features.
Compared with them, Scarab is more compact, customizable, and tightly inte-
grated with a SAT solver (i.e., Sat4j).

The rest of this paper is organized as follows. Section 2 presents two exam-
ples of Scarab programs. The classes and methods of Scarab are presented in
Section 3. Section 4 presents some advanced solving techniques by using Sat4j.
Section 5 shows experimental results of the Latin Square problem. The paper is
concluded in Section 6.

2 Scarab Program Examples

We present two examples of Scarab programs. One is the square packing problem.
Square Packing SP (n, s) is a problem of packing a set of squares of sizes 1 ×
1 to n × n into an enclosing square of size s × s without overlapping. For a
given SP (n, s), the most direct modeling would be using integer variables xi ∈
{0, . . . , s− i} and yi ∈ {0, . . . , s− i} for each square i (1 ≤ i ≤ n) such that each
pair (xi, yi) represents the lower left coordinates of the square i. We then enforce
the constraint (xi + i ≤ xj)∨ (xj +j ≤ xi)∨ (yi + i ≤ yj)∨ (yj +j ≤ yi) to ensure
that there is no overlapping for any distinct squares i and j (1 ≤ i < j ≤ n).

Fig. 2 shows a Scarab program of SP (15, 36). Scarab DSL can be used to con-
cisely express the above modeling. The first three lines import classes provided
by Scarab. The int method defines integer variables in line 7–8. The notation
’x denotes the symbol x in Scala. Symbols ’x(i) and symbols ’y(i) with in-
dices are converted to integer variable objects xi and yi with the help of implicit
conversion of Scala. The add method defines non-overlapping constraints in line
9–11. The find method searches a solution after encoding the defined CSP to
SAT, and the solution method returns the solution in line 13.

Another example is the Latin Square problem used in international CSP
solver competition [11]. Latin Square LS(n) is a problem of placing different n
numbers into n × n matrix such that each number is occurring exactly once in
each row, each column, and each modular diagonals in two directions. For a given
LS(n), we use a n×n matrix of integer variables xi,j ∈ {1, . . . , n} (1 ≤ i, j ≤ n).
The exact one constraints can be expressed by using alldiff constraints [12]
that is one of the best known and most studied global constraints in constraint
programming [13].

Fig. 3 shows a Scarab program of LS(5). Scarab DSL can be used to concisely
express the alldiff -based modeling with the help of map method of Scala. For
example, alldiff((1 to n).map(j => ’x(i,j))) in line 4 corresponds to the
constraint alldiff (xi,1, xi,2, . . . , xi,n) in each row i.

3 Classes and Methods of Scarab

This section explains the classes/objects and methods provided by Scarab. They
can be classified into:

– Classes/objects for constraint modeling defined in jp.kobe u.scarab.csp

package (such as Term, Constraint, and CSP classes),
– Classes/objects for constraint solving defined in jp.kobe u.scarab.solver

package (such as Encoder, SatSolver, and Solver classes), and
– Classes/objects implementing Scarab DSL defined in jp.kobe u.scarab pack-

age (such as Scarab class).

3.1 Classes and Methods for Constraint Modeling

The following classes for linear arithmetic constraints are provided in Scarab and
the diagram of these classes is shown in Fig. 4. Note that fields and methods are
omitted from the figure except the classes of CSP, Domain, and Assignment.

– Term is an abstract class for linear arithmetic expressions. Its subclasses
include Var (integer variables) and Sum (linear arithmetic expressions).

– Constraint is an abstract class for linear arithmetic constraints. Its sub-
classes include Literal (literals), And (conjunction of constraints), and Or

(disjunction of constraints). Literal is an abstract class whose subclasses
include Bool (positive Boolean literals), Not (negative Boolean literals), and
LeZero (linear arithmetic comparisons).

Expr

Term Constraint

Sum Var

Bool

And Or

Not

Literal

LeZero

CSP

variables: Sec [Var]
bools: Sec [Bool]
dom: Map [Var, Domain]
constraints: Sec [Constraint]

Domain

lb: Int
ub: Int

1

1

1 1

Assignment

intMap: Map[Var, Int]
boolMap: Map[Bool, Boolean]

1

1

Fig. 4. Class Diagram of Classes for Constraint Modeling

– CSP is a class for CSPs. Other related classes include Domain class for repre-
senting domains of integer variables and Assignment class for representing
assignments on integer variables and Boolean variables.

Term classes: Term is an abstract class for linear arithmetic expressions. Term
objects are constructed with usual arithmetic operators as defined in the fol-
lowing BNF where Int, String, Seq, and Any are categories of integers, strings,
sequences, and any objects of Scala language respectively.

T ::= V
∣∣ - T

∣∣ T + Int
∣∣ T + T

∣∣ T - Int
∣∣ T - T

∣∣ T * Int
∣∣

Sum(V, . . .)
∣∣ Sum(Seq(V, . . .))

V ::= Var(String, String, . . .)
∣∣ V (Any, . . .)

When the above syntax is used, any terms are converted to linear arithmetic
expressions of the form b +

∑
aixi,and expressed by Var or Sum objects.

– Var(name: String, indices: String*)

Class for integer variables is implemented as a case class Var. The name field
is its head name, and indices field is a (possibly empty) sequence of its
indices. Two integer variables are equal when their names and indices are
all equal. New integer variable can be constructed by adding extra indices
to existing integer variable. It is implemented by defining apply method of
Var class. Any objects including integers can be used as extra indices. The
following example illustrates how to create integer variable objects.

scala> val x = Var("x") // Creates a new integer variable x
scala> val x1 = x(1) // Creates a new integer variable x(1)
scala> val y = Var("y") // Creates a new integer variable y
scala> val y12 = y(1,2) // Creates a new integer variable y(1, 2)

– Sum(b: Int, coef: Map[Var,Int])

Class for linear arithmetic expressions is implemented as a case class Sum.

The b field is the constant part, and the coef field is the mapping from
integer variables to their coefficient values. For example, the object Sum(-1,
Map(x -> 1, y -> 2)) represents a linear arithmetic expression−1+x+2y.
The following example illustrates how to create Sum objects.

scala> x + y * 2 - 1 // −1 + x + 2y
scala> Sum((1 to 3).map(i => x(i))) // x(1) + x(2) + x(3)

Constraint classes: Constraint is an abstract class for linear arithmetic con-
straints. Constraint objects are constructed with usual arithmetic operators as
defined in the following BNF.

C ::= B
∣∣ T op T

∣∣ ! C
∣∣ C && C

∣∣ C || C
∣∣

And(C, . . .)
∣∣ And(Seq(C, . . .))

∣∣ Or(C, . . .)
∣∣ Or(Seq(C, . . .))

op ::= <=
∣∣ < ∣∣ >= ∣∣ > ∣∣ === ∣∣ !==

B ::= Bool(String, String, . . .)
∣∣ B(Any, . . .)

When the above syntax is used, any constraints are converted to negation normal
form which is constructed from literals, conjunctions, and disjunctions. Note
that, as is shown in the example of Latin Square, Scarab programs are not
restricted to this syntax, we can combine it with Scala program.

– Bool(name: String, indices: String*)

Class for Boolean variables is implemented as a case class Bool. The name

field is its head name, and indices field is a (possibly empty) sequence of its
indices. Two Boolean variables are equal when their names and indices are
all equal. New Boolean variable can be constructed by adding extra indices
to existing Boolean variable in the same way as integer variables.

– Not(p: Bool)

Class for negative Boolean literals is implemented as a case class Not. The
p field is its Boolean variable.

– LeZero(sum: Sum)

Class for linear arithmetic comparisons is implemented as a case class LeZero.
It represents the comparison of sum ≤ 0. Equality and disequality relations
are translated to conjunction and disjunction of LeZero objects respectively.
The following example illustrates how to create LeZero objects.

scala> x > y // 1− x + y ≤ 0
scala> x === y // x− y ≤ 0 ∧ −x + y ≤ 0
scala> x !== y // 1 + x− y ≤ 0 ∨ 1− x + y ≤ 0

– And(cs: Constraint*)

Class for conjunctions is implemented as a case class And. The following
example illustrates how to create And objects.

scala> Bool("p") && x > 0 // p ∧ 1− x ≤ 0
scala> And((1 to 2).map(i => x(i)>0)) // 1− x(1) ≤ 0 ∧ 1− x(2) ≤ 0

– Or(cs: Constraint*)

Class for conjunctions is implemented as a case class Or.

CSP classes: In Scarab, CSP is implemented as CSP class and provides methods
for adding integer variables, Boolean variables, and constraints. Domain class is
provided for representing domains of integer variables and Assignment class is
provided for representing assignments on integer variables and Boolean variables.

– CSP(var variables: Seq[Var], var bools: Seq[Bool],

var dom: Map[Var,Domain], var constraints: Seq[Constraint])

Class for CSPs is implemented as a case class CSP. The variables field rep-
resents the current list of integer variables, and the bools field represents
the current list of Boolean variables. The dom field is used to remember the
current mapping from integer variables to their domains. The constraints

field represents the current list of constraints. The following methods are
provided to modify CSP objects.
• int(x: Var, d: Domain) adds the integer variable x and its domain d

to the CSP.
• int(x: Var, lb: Int, ub: Int) adds the integer variable x and its

domain as Domain(lb, ub) to the CSP.
• bool(p: Bool) adds the Boolean variable p to the CSP.
• add(c: Constraint) adds the constraint c to the CSP.
• show displays the CSP to standard output.
• commit remembers the current setting of the CSP. Only one commit

point is allowed.
• rollback resets the setting of the CSP to the last commit point.

The following example illustrates how to create and modify CSP object.

scala> val csp = CSP()

scala> csp.int(x, 1, 9) // x ∈ {1..9}
scala> csp.add(x !== 2) // x 6= 2

– Domain(lb: Int, ub: Int)

Class for domains of integer variables is implemented as a case class Domain.
Only interval domains are allowed in the current implementation. The lb

and ub fields are its lower and upper bound values respectively.
– Assignment(intMap: Map[Var,Int], boolMap: Map[Bool,Boolean])

Class for assignments of integer variables and Boolean variables is imple-
mented as a case class Assignment. Assignment objects are used to represent
the CSP solutions.

3.2 Classes and Methods for Constraint Solving

The following classes for SAT encoding and solving CSP are provided in Scarab
and the diagram of these classes is shown in Fig. 5.

– Encoder is an abstract class for encoding CSP to SAT. OrderEncoder class
is the only implementation in the current version. Simplifier class is used
for Tseitin transformation [14] by OrderEncoder.

– SatSolver is an abstract class for SAT solvers. Sat4j class described in
Section 4 is the only implementation in the current version.

– Solver is a class for solving CSP. It calls Encoder to encode the given CSP
to SAT, and calls SatSolver to find a solution.

CSP Solver

Encoder

OrderEncoder

SatSolver

Sat4j

Simplifier

11

1

1

1

1

1

1

Fig. 5. Class Diagram of Classes for Constraint Solving

Encoder classes:

– Encoder(csp: CSP, satSolver: SatSolver)

Class for encoding the given CSP to SAT is provided as an abstract class
Encoder. The csp field specifies the CSP to be encoded, and the satSolver

field specifies the SAT solver to which the encoded CNF is passed. Encoder
is also used to decode back the solution obtained by the SAT solver to a
CSP solution. The following methods and fields are provided by this class.

• encodeCSP method encodes the given CSP to SAT. It calls encode(x)

method for each integer variable x and add(c) method for each con-
straint c, and obtained SAT clauses are passed to the SAT solver through
the addAllClause method.

• encode(x: Var) is an abstract method obtaining the list of encoded
SAT clauses for the integer variable x. The method is implemented in
OrderEncoder class.

• add(c: Constraint) is an abstract method to encode the constraint c,
and implemented in OrderEncoder class. It translates the constraint to
CNF formula (a list of literals) by Tseitin transformation, encodes the
CNF formula to SAT clauses, and the SAT clauses are passed to the
SAT solver.

• decode method returns the CSP solution as an Assignment object by de-
coding the SAT solution obtained from the SAT solver. It calls decode(x)
method for each integer variable x

• decode(x: Var) method is an abstract method to obtain the value
of the integer variable x from the SAT solution. It is implemented in
OrderEncoder class.

– OrderEncoder(csp: CSP, satSolver: SatSolver)

OrderEncoder is the only implementation of Encoder class in the current
version of Scarab.

SatSolver classes:

– SatSolver

Class for SAT solvers is provided as an abstract class SatSolver. The meth-
ods provided by this class include the followings.

1: val csp = CSP()

2: val x = Var("x")

3: csp.int(x(1), 1, 3) // x(1) ∈ {1..3}
4: csp.int(x(2), 1, 3) // x(2) ∈ {1..3}
5: csp.add(x(1) < x(2)) // x(1) < x(2)
6:

7: val satSolver = new Sat4j()

8: val encoder =

9: new OrderEncoder(csp, satSolver)

10: val solver =

11: new Solver(csp, satSolver, encoder)

12: while (solver.find)

13: println(solver.solution)

1: import

2: jp.kobe_u.scarab.sapp._

3:

4: int(’x(1), 1, 3)

5: int(’x(2), 1, 3)

6: add(’x(1) < ’x(2))

7:

8: while (find)

9: println(solution)

Fig. 6. Example Programs for x(1) < x(2), where x(1), x(2) ∈ {1..3}. The left side is
written in Scala using Scarab classes. The right side is written by using Scarab DSL.

• addClause(lits: Seq[Int]) is an abstract method to add the SAT
clause to the SAT solver.

• addAllClause(clauses: Seq[Seq[Int]]) is an abstract method to add
the SAT clauses to the SAT solver.

• isSatisfiable is an abstract method to search a SAT solution.

• model is an abstract method returning the SAT solution when the given
SAT instance is found satisfiable by isSatisfiable method.

– Sat4j

Sat4j is the only implementation of SatSolver class in the current version.
It is explained in Section 4.

Solver class:

– Solver(csp: CSP, satSolver: SatSolver, encoder: Encoder)

Class for CSP solvers is provided as a class Solver. It consists of CSP,
SAT solver, and encoder. The methods provided by this class include the
followings.

• find method searches a CSP solution by encoding the CSP with encodeCSP

method of the encoder, searching a SAT solution with isSatisfiable

method of the SAT solver, and decoding back to a CSP solution with
decode method of the encoder. It searches the next CSP solution when
it is called again by adding the negation of the last CSP solution as extra
constraint.

• find(assumption: Constraint) method searches a CSP solution under
specified assumption. The constraint given as the assumption should be
translated to a conjunction of SAT literals.

• solution method returns the CSP solution as an Assignment object
when the given CSP instance is found satisfiable by find method.

The left side of Fig. 6 illustrates how to use the Solver class.

3.3 Classes and Methods Implementing Scarab DSL

jp.kobe u.scarab.sapp object provides several functions useful as Constraint
Programming DSL. The sapp object contains CSP, Sat4j, OrderEncoder, and
Solver objects as its default CSP, SAT solver, encoder, and CSP solver respec-
tively. It provides the following methods by delegating to the underlying objects.

– int(x: Var, lb: Int, ub: Int), bool(p: Bool), add(c: Constraint)

commit, rollback
– find, find(assumption: Constraint), solution

It provides implicit conversion from Scala symbols to integer variables (Var ob-
jects). The right side of Fig. 6 illustrates how to use sapp object. We can see
that the program is more concisely written.

3.4 Implementation of the alldiff constraint

Global constraints such as alldiff play an important role in Constraint Pro-
gramming [13]. In Scarab, all we have to do for implementing global constraints
is just decomposing them into simple arithmetic constraints. The effectiveness
of this approach has been recently shown by Bessiere et al [15]. For example,
the following is a naive implementation of the alldiff (x1, . . . , xn) constraint:

def alldiff(xs: Seq[Var]) =

And(for (Seq(x, y) <- xs.combinations(2)) yield x !== y)

In the above, alldiff (x1, . . . , xn) is decomposed into pairwise not-equal con-
straints

∧
1≤i<j≤n(xi 6= xj). It is also known that some additional hints such

as permutation constraints and pigeon hole constraints can be effective for per-
formance improvement. The following is an optimized implementation of the
alldiff (x1, . . . , xn) constraint:

def alldiff(xs: Seq[Var]) = {
val lb = for (x <- xs) yield csp.dom(x).lb

val ub = for (x <- xs) yield csp.dom(x).ub

val ph = // pigeon hole
And(Or(for (x <- xs) yield !(x < lb.min+xs.size-1)),

Or(for (x <- xs) yield !(x > ub.max-xs.size+1)))

def perm = // permutation
And(for (num <- lb.min to ub.max)

yield Or(for (x <- xs) yield x === num))

val extra = if (ub.max-lb.min+1 == xs.size) And(ph,perm) else ph

And(And(for (Seq(x, y) <- xs.combinations(2)) yield x !== y),extra)

}

In the above, for each alldiff constraint, two extra pigeon-hole constraints
¬
∧

(xi < lb + n − 1) and ¬
∧

(xi > ub − n + 1) are added, where lb and ub are
the lower and upper bounds of {x1, x2, . . . , xn}. Extra permutation constraints∧ub

i=lb

∨n
j=1(xj = i) are also added if n = ub−lb+1. Other global constraints such

as element, weightedsum, cumulative, and global cardinality can be implemented
in the same way as done in Sugar [6].

4 Advanced Solving Techniques using Sat4j

Scarab adopts Sat4j [4] as its default implementation of the SatSolver class.
By using the features of Sat4j, Scarab provides the functions: addition of extra
constraints; CSP solving with assumptions; commit and rollback of constraints.
These functions can be used to implement advanced solving techniques in Scarab,
such as the search of optimum solution and enumeration of the solutions.

Incremental search: As illustrated in the example below, Scarab allows to add
extra constraints after finding a solution.

scala> int(x, 1, 3); int(y, 1, 3) // x ∈ {1..3}, y ∈ {1..3} is added
scala> add(x === y) // x = y is added
scala> find // solution is x = 3, y = 3
scala> add(x !== 3) // x 6= 3 is added as extra constraint
scala> find // solution is x = 2, y = 2

In the first call of find method, the whole CSP is encoded and generated
SAT clauses are added to Sat4j, then isSatisfiable method is called to find a
solution. In the second call of find method, only the extra constraint x 6= 3 is
encoded and added to Sat4j, then isSatisfiable method is called again. The
learned clauses obtained by the first find are kept at the second call. Note that
addition of extra constraints is not allowed after the CSP becomes unsatisfiable.

Search under assumptions: find(assumption: Constraint) method pro-
vides CSP solving under assumption given by the specified constraint. The
constraint of assumption should be encoded to a conjunction of literals (oth-
erwise an exception is raised). Then, the literals are passed to Sat4j through
isSatisfiable(literals) method which enables SAT solving under assump-
tion. The following example (continuation of the last example) illustrates the
usage of solving with assumptions.

scala> find(y === 3) // UNSAT
scala> find(x === 1) // solution is x = 1, y = 1

Commit and Rollback of Constraints: Commit and rollback of constraints
are implemented as follows.

1. commit saves the current state (the number of integer variables, Boolean
variables, and constraints) of CSP. Only one commit point is allowed in the
current implementation.

2. rollback restores the state of CSP to the last commit point. It also initializes
the state of Sat4j using its reset method. The whole CSP is encoded and
added to Sat4j again at the next call of find method.

1: val lb = n; var ub = s; int(’m, lb, ub)

2:

3: for (i <- 1 to n)

4: add((’x(i)+i <= ’m) && (’y(i)+i <= ’m))

5:

6: while (lb <= ub && find(’m <= ub)) {

7: add(’m <= ub); ub -= 1

8: }

9:

10: while (find)

11: println(solution)

Fig. 7. Decremental Search by Assumption

1: var lb = n; var ub = s; commit

2:

3: while (lb < ub) {

4: var size = (lb + ub) / 2

5: for (i <- 1 to n)

6: add((’x(i)+i<=size)&&(’y(i)+i<=size))

7: if (find) {

8: ub = size; commit

9: } else {

10: lb = size + 1; rollback

11: }

12: }

Fig. 8. Binary Search by Commit/Rollback

Commit/rollback methods provides much more flexible control on solving.
However, the encoding process is repeated again, and obtained learned clauses
are lost in the subsequent solving after the CSP becomes unsatisfiable.

The following example (continuation of the last example) demonstrates the
usage of commit/rollback.

scala> commit // commit point is made
scala> add(x < y) // x < y is added
scala> find // UNSAT
scala> rollback // x < y is dropped
scala> find // solution is x = 2, y = 2

Search of Optimum Solution: We demonstrate the application of the above
three techniques for searching the optimum solution of a given CSP. An example
of Square Packing in Fig. 2 is used to find the minimum size of enclosing square.

In Fig. 7, a decremental search is implemented by using assumptions and the
addition of extra constraints. In the program, integer variable m ∈ {lb, . . . , ub}
denotes the size of the enclosing square. We can run this program by adding it
to the bottom of the program of Fig. 2. In line 6, find method is called under
m ≤ ub. If a solution exists, a constraint m ≤ ub is added and ub is decremented
(line 7). In line 10 and 11, all optimal solutions are enumerated. In Scarab, when

Table 1. Benchmark Results on LS(n): CPU time of Scarab

n
3 4 5 6 7 8 9

UNSAT UNSAT SAT UNSAT SAT UNSAT UNSAT

alldiff (naive) 0.164 0.153 0.183 0.398 0.210 T.O. T.O.
alldiff (optimized) 0.230 0.209 0.236 0.264 0.221 0.212 0.235

n
10 11 12 13 14 15 16

UNSAT SAT UNSAT SAT UNSAT UNSAT UNSAT

alldiff (naive) T.O. 0.347 T.O. T.O. T.O. T.O. T.O.
alldiff (optimized) 0.370 0.332 0.981 0.545 9.792 389.917 458.187

find is called for a CSP without any change, it searches the next CSP solution
by adding the negation of the last CSP solution as extra constraints.

Fig. 8 shows a binary search by using commit/rollback methods and the
addition of extra constrains. Line 4 computes the size which divides the region
of the current lower and upper bounds in half. Lines 5 and 6 add extra constraints
that limits the size of the enclosing square. In line 7, find is called. If the CSP is
satisfiable, the upper bound is updated and the addition of extra constraints is
committed (line 8). Otherwise, the lower bound is incremented and the addition
of extra constraints is canceled. Note that the whole CSP is encoded again only
after the CSP becomes unsatisfiable.

5 Experiments

To evaluate the basic efficiency of Scarab, we carried out experiments on the
Latin Square problem shown in Fig. 3. We use two different implementations of
alldiff presented in Section 3.4. We set a timeout (T.O) of 1 hours. All times
were measured on Mac OS X with Xeon 2.93 GHz and 2 GB memory for JVM.

We note that LS(n) with n > 8 were unsolvable by any solver in the 2009 CSP
solver competition except Sugar which solved the problem with up to n = 12.

Table 1 shows CPU time of Scarab in seconds for solving LS(n) of 3 ≤ n ≤ 16.
Scarab with an optimized implementation of alldiff succeeded in solving the
problem with up to n = 16. The easy-to-customize feature of Scarab contributes
the performance improvement for this problem.

6 Conclusion

This paper presents the Scarab system, a Scala implementation of a prototyping
tool for developing SAT-based Constraint Programming systems. As is shown
by two examples of Square Packing and Latin Square, Scarab DSL provides a
rich modeling language for constraint programming with the help of Scala.

By using the features of Sat4j, Scarab provides the functions: incremental
search; CSP solving with assumptions; commit and rollback of constraints. These
functions can be used to implement advanced solving techniques in Scarab, such
as searching for optimum solutions and enumerating those solutions.

An interesting extension is to introduce more features from Sat4j. For in-
stance, Sat4j allows to compute a Minimal Unsatisfiable Subformula (MUS) in
case of inconsistency. Sat4j also provides a built-in optimization framework and
a specific handling of solution enumeration. Sat4j also handles natively cardi-
nality and pseudo-Boolean constraints. Another extension would be to allow the
modeling of soft constraints in the DSL, i.e. constraints which may be violated
against a penalty. The source code and information of Scarab is available in
http://kix.istc.kobe-u.ac.jp/~soh/scarab/.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
In Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications (FAIA)., IOS
Press (2009)

2. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Second edn. Artima,
Inc. (2010)

3. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (2005) 316–344

4. Le Berre, D., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3) (2010) 59–6
5. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP

into SAT. Constraints 14(2) (2009) 254–272
6. Tamura, N., Tanjo, T., Banbara, M.: System description of a SAT-based CSP

solver Sugar. In: Proceedings of the 3rd International CSP Solver Competition.
(2008) 71–75

7. : Copris. http://bach.istc.kobe-u.ac.jp/copris/

8. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and com-
binatorial optimisation in NumberJack. In: Proceedings of the 7th International
Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR 2010), LNCS 6140. (2010)
181–185

9. Metodi, A., Codish, M.: Compiling finite domain constraints to SAT with BEE.
Theory and Practice of Logic Programming 12(4-5) (2012) 465–483

10. Zhou, N.F.: The language features and architecture of b-prolog. Theory and
Practice of Logic Programming 12(1-2) (2012) 189–218

11. Lecoutre, C., Roussel, O., van Dongen, M.R.C.: Promoting robust black-box solvers
through competitions. Constraints 15(3) (2010) 317–326

12. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence (AAAI 1994).
(1994) 362–367

13. van Hoeve, W.J., Katrie, I.: Global constraint. In: Handbook of Constraint Pro-
gramming. Foundations of Artificial Intelligence. Elsevier (2006) 169–208

14. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic Part II (1968) 115–125

15. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompo-
sitions of all different, global cardinality and related constraints. In: Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009).
(2009) 419–424

